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Abstract. Exact calculation of the thermal diffusion coefficient, DT, of a binary mixture by 
molecular dynamics requires a separate determination of the partial enthalpies. A recently 
proposed method is used here to evaluate these quantities for Lennard-Jones binary liquid 
mixtures of which the component particlesinteract via very different pair potential functions. 
It is shown that the method works well for the ‘non-ideal’ mixtures considered. The ‘exact’ 
values of the partial enthalpies deviate significantly from those approximated by sharing the 
total enthalpy among the components proportionally to the composition. Thus the values of 
DT recently computed for these mixtures have to be corrected appreciably, as expected. 

1. Introduction 

A reasonable definition of the heat current in a binary mixture requires the partial 
enthalpies [ 1-31. Thus, computation of correlation functions for the thermal conduc- 
tivity, A, and the thermal diffusion coefficient, DT, by molecular dynamics (MD) methods 
involves an additional evaluation of the partial enthalpies, h, (a = 1,2), of the two- 
component system. Recently, a Widom-like sampling method, the so-called difference 
method, has been proposed for the determination of ‘exact’ values of h,  [4]. It has been 
tested for the approximately ‘ideal’ Ar-Kr Lennard-Jones (LJ) mixture [5 J and the results 
demonstrated the applicability of the method. 

This difference method is used here for very ‘non-ideal’ binary liquid LJ mixture types. 
Type A consists of particles that differ substantially as regards the energy interaction 
parameter, while type B contains particles with very different volume parameters in the 
pair potential. 

The accuracy of the computed data is discussed for six different mixtures at equi- 
molar concentration as well as for the concentration dependence of one chosen mixture. 

Finally, the correction factors for the transport coefficients of these systems, which 
have been calculated with the use of approximate partial enthalpies [6], are given. 
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2. The difference method 

As the difference method (DM) is presented in detail in [4, 51, we only outline it briefly 
here. The DM is a Widom-like method which samples the change in the potential energy 
that results from virtually interchanging a particle of a given species for a particle of 
another species. For a two-component system of species A and B, the DM directly 
provides the difference values between such excess quantities as the chemical potentials, 
the partial enthalpies, and the partial volumes. We concentrate here on the partial 
enthalpies, hA and hB,  which may be computed using the following formula: 

Ah = h* - hB = hg - h g  = ( ( A U A ' B -  + U(N*, NB) + PV) 

where AUA'B-  denotes the change in the potential energy resulting from the trans- 
formation of a particle B into a particle A-likewise A UB +*- for a particle A. U( NA, N,)  
denotes the potential energy of a binary mixture composed of NA and NB particles, 
where N A  + NB is the total number of particles of the system. Vdenotes the volume, P 
the pressure and = l/kBTWith kB the Boltzmann constant and Tthe temperature. The 
brackets indicate the ensemble average-here the NPT ensemble. Assuming pairwise 
interaction, we have for any particle (i, B) 

(j, a+ r,B) 

where Qap(r) ( a ,  p = 1,2; a < p) denote the three pair potential functions occurring in 
a two-component system. 

Denoting the total molar enthalpy of the mixture by Hand the mole fractions of the 
components by x A  and x B ,  the partial enthalpies hA and hB can be obtained via the 
following equations: 

H = N*h* + NBhB h* = (1/N)H -I XBhh hB = (1/N)H - x*Ah. 

Apparently, knowledge of H and Ah suffices for calculating the values for the partial 
enthalpies h,. 

3. Potentials, mixture systems and calculations 

Lennard-Jones (LJ) (12-6) potential functions have been used throughout. The potential 
parameters .zap and olvp were chosen by analogy with those of the model mixtures that 
have already been investigated in [6]. Two groups of mixture systems were studied. The 
first one contains systems composed of particles of very different interaction strength, 
the second one, systems composed of particles of very different 'volumes'. For both types 
of mixture, the unlike-potential interaction (A-B interaction) was varied systematically. 
We list the LJ potential parameters for the six mixtures considered in table 1. 

Note that the notation of [6] has been used, and furthermore that the absolute values 
of the potential parameters have been chosen so that all the mixtures represent nearly 
the same one-fluid system at a reduced density of n," = 0.75 and a reduced temperature 
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Table 1. Lennard-Jones potential parameters for the six model mixtures. 

120.0 
150.0 
180.0 

141.45 

2:) 3.5375 3.5375 3.5375 100.0 200.0 
A5 

::} 2.9479 4.1271 {Xi;::) 141.45 
B5 

t Notation from [ 6 ] .  

3.1838 
141.45 

of T,* = 0.95 [7]. By making this choice of LJ parameters we have ensured that the 
pressures of all the systems are approximately equal. 

The MD calculations were performed in the NPT ensemble, following the formalism 
of Nose-Andersen [4, 51. Details of these calculations may be found in [5] .  Some 
important technical details of our runs are presented in table 2. 

4. Results 

4.1. Ar-Kr 

To check our vector version of the MD programme, we reproduced all the Lennard-Jones 
Ar-Kr data computed in [5] .  While we achieved excellent agreement for all the quantities 
in general, some care was needed for states of low Ar mole fractions since the state point 
chosen in [5]  is very close to the melting line of Kr. To avoid the occurrence of metastable 
states during the MD computation, these latter runs were performed with 256 particles 
and equilibration was performed in the NVEp ensemble, where E denotes the total 
energy andp the total momentum of the system. 

4.2. Difference values of the chemical potential, partial volume, and partial enthalpy for  

For system A l ,  which is a non-ideal one with a strong demixing tendency [8], we have 
calculated the difference quantities for the whole concentration range. Table 3 contains 
the difference values for the chemical potential, Apex = p z  - p g ,  the partial volume 
AV = v A  - v B ,  and the potential enthalpy, A h  = hA - h g ,  as functions of the mole 
fraction of component A.  The statistical error for these quantities is about 3% in general. 

system A1 at different concentrations 

Table 2. Technical details of the MD computations. 

Particle number, N 
Ensemble 

108-256 
NPT ( P :  pressure; T temperature) 

Number of integration time steps 
Time step lo-14 s 

105 

Integration scheme Fourth-order Gear algorithm 

Computation time for 1000 steps on the Cyber 205 
Cut-off radii of the LJ potentials (2.5-3.3)~AB 

9.2 s ( N  = 108) 
36 s ( N  = 256) 
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Table 3. Computed difference values for the chemical potential, the partial enthalpy, and 
the partial volume of system A1 (n* = Nul ,  = 0.75; T*  = TkB/EAA = 1.28). 

Ap*"X Ah* AU* 
XA (APLeXINEAA) (Ah"*) ( A U I N d A )  

0.148 8.47 12.23 0.055 
0.25 7.62 11.18 0.195 
0.398 6.44 9.79 0.331 
0.5 5.65 8.99 0.365 
0.602 4.87 7.86 0.356 
0.75 3.77 6.39 0.348 
0.852 3.00 5.09 0.315 

In figure 1 we compare the values of A , U * ~ ~  for mixture A1 and Ar-Kr as functions of 
the molar fraction. Mixture A1 shows a strong dependence of A,u*ex on the composition, 
while A , U * ~ ~  for Ar-Kr remains nearly constant over the whole range of concentration. 
This behaviour of AP*~'  for system A1 indicates a strong positive deviation of the Gibbs 
free energy from ideality. It corroborates our finding in [SI that an unsymmetric choice 
of the unlike-potential parameter generates non-ideality of a mixture. 

4.3. Partial enthalpies and correction factors fo r  the thermal diffusion coefficients of 

While for the A systems the DM method works excellently with transformations of 
particles of both species, for B systems solely particles with the larger 'volume' are 
allowed to be transformed into those of smaller 'volume', for plausible reasons. Hence 
for the latter systems we doubled the number of runs to achieve results with an accuracy 
comparable to that achieved for the systems A.  The results for all the systems are 
summarised in table 4, which contains additionally the partial enthalpy differences 
calculated by distributing the total enthalpy among the component particles pro- 

systems of type A and B 

I I I 

Ar- Kr 

0.2 0.4 0.6 0.8 

2 

a 
Figure 1. The excess chemical potential difference of system A1 and Ar-Kr as a function of 
the mole fraction. T* = 1.28; n* = 0.75. 
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Table 4. ‘Exact’ and approximated partial enthalpies (all the values without the potential- 
tail correction) calculated for the systems characterised in table 1 and Ar-Kr. Details for the 
systems (equi-molar composition): F = (Al) 1.28, (A3) 1.43, (A5) 1.57; (Bl) 0.95, (B3) 
0.95, (B5) 0.95, (Ar-Kr) 0.98; n* = (Al) 0.75, (A3) 0.75, (A5) 0.75; (Bl) 0.75, (B3) 0.75, 
(B5) 0.75, (Ar-Kr) 0.75. 

A1 -0.548 -4.398 1.057 -5.999 3.850 
A3 -0.775 -4.048 0.620 -5.440 3.273 
A5 -0.986 -3.876 0.366 -5.224 2.890 

B1 -1.727 -3.401 -3.675 -1.451 1.674 
B3 -1.658 -2.919 -3.008 -1.468 1.261 
B5 -1.858 -2.725 -3.244 -1.332 0.867 

Ar-Kr -2.737 -5.667 -2.619 -5.800 1.176 

7.056 
6.060 
5.590 

-2.224 
-1.540 
-1.912 

1.386 

portionally to the mole fractions. These latter enthalpy values have been used to compute 
the transport coefficients presented in [6]. We shall denote these approximate values by 

Evidently the values of Ah deviate substantially from the approximate ones-even 
for systems A3 and B3, which are the most ideal mixtures in the sense that the potential 
parameters for unlike interactions represent the means of the parameters for like inter- 
actions. 

These significant discrepancies lead us to expect that the thermal conductivity, A, 
and the thermal diffusion coefficient, DT, computed in [6] on the basis of values of 
h y h  have to be corrected considerably. Fortunately the effect of the enthalpy term on 
the autocorrelation function of the heat current is negligibly small, as shown in [9]. Thus 
il is not influenced by the incorrect determination of ha. However, the thermal diffusion 
coefficient is markedly dependent on the values of h,, as we have demonstrated in terms 

hmech 
( I .  

Table 5. Thermal diffusion coefficientst and their partial contributions (from the DP. DE and 
DK parts of the Green-Kubo integral [ 6 ] )  for the mixture systems considered in table 1, and 
Ar-Kr. 

System$ DLp DEE DT mech 0 DgK D’ DT.mech 

A1 5.45 -8.89 -4.85 - -3.44 0.60 
A3 3.83 -6.08 -3.28 - -2.25 0.55 
A5 3.31 -5.15 -2.66 - -1.84 0.65 

B1 0.17 1.95 -1.47 - 2.12 -1.30 
B3 0.08 1.81 -1.63 - 1.89 -1.40 
B5 0.13 3.59 -1.63 - 3.72 -1.50 

Ar-Kr -0.302 -0.684 -0.580 0.452 -0.53 -0.43 

t Inunitsofp x 
error for DT is about 20% (see [3] and [6]). 
$ Equi-molar composition. 
§ Approximate value based on h y h  (see table 4). 

cm2 s- l ,  wherep denotesthemassdensityofthe mixture. Thestatistical 
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of the three partial cross correlation functions (CCFS) constituting the total one [3]. 
We have the diffusive potential (DP), the diffusive enthalpic (DE) and the diffusive 
kinetic (DK) part. Each term contributes to the total CCF in the same order of magni- 
tude. A detailed calculation shows that the DE term is directly proportional to h, - 

The partial contributions to the coefficient DT have not been given in [6], and we 
present them here together with the corrected values, evaluated on the basis of the 
‘exact’ values of h,, and the total transport coefficients, in table 5 .  Our choice of equal 
masses of the particles of the mixtures of types A and B ensures that there is no DK part 
present. Consequently the DE part is about half of the total DT, and Ah computed by the 
DM can be used directly, as the mass factor is unity. 

Table 5 shows the appreciable changes that result for the coefficient DTof the various 
mixtures. Although even the sign of the transport coefficient is reversed, the trends 
found in [6] remain approximately preserved. 

In particular, we have opposite signs for the transport coefficients of systems of type 
A and type B. Noticing the large error bars of these coefficients, we see that there is only 
a slight dependence on the particular system of a given type. The sign change of DT on 
going from type A to type B occurs for the following reasons: as isotopic systems are 
considered, no DK contribution to the total correlation function and hence the total DT 
exists. Thus the transport coefficient is composed of DP and DE terms only. For these 
non-idealmixtures the thermodynamiccontribution, i.e. the DE term, gives the dominant 
part of DT. It is known that thermodynamic properties of LJ mixtures are oppositely 
affected when the a-parameter of a chosen particle species is altered instead of E [ 111. 

where mA and mB denote the masses of the component particles [lo]. 

5. Discussion and conclusions 

We have shown that the DM works just as well for non-ideal stable mixtures of the LJ 
type as for the more ideal mixtures studied in [4]. It gives partial enthalpies accurate to 
within 2-3%, at’least for systems of type A.  One useful indication of the suitability of 
the method for determining thermodynamic properties is the good agreement of results 
obtained by virtually mutating a particle of species A into species B and a particle of 
species B into species A.  

As expected, the Ah values obtained using this method differ appreciably from those 
computed by ‘sharing’ the total enthalpy among the components. Accordingly, the 
thermal diffusion coefficient determined using the approximated values of h,  is not 
correct for the model mixtures considered, A l ,  A3, A5 and B1, B3, B5. In [6] we have, 
however, anticipated this. 

Surprisingly, significant corrections for DTare also necessary for the LJ Ar-Kr mixture 
because of the large mAr/mKr ratio. The partial contributions to DT and the total value 
for Ar-Kr are given at the bottom of table 5 .  Although h, - hB exceeds h y h  - hgech 
by only 10% (see table 4), the weighting factor (mAr/mKr)l/* leads to a final enlargement 
of the absolute value of DT by 25%. 

Two concluding remarks might be in order. Using the approximate values of h, for 
the determination of DT, i.e. the cross correlation function, the latter always starts at 
the origin. However, when the correct values of h, are used-for instance, as determined 
using the DM-the CCF commonly has a non-zero initial value. 

In equilibrium MD computations, one may easily include the ‘exact’ thermodynamic 
values of h, to determine the correct transport coefficient. By contrast, in non-equi- 
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librium MD, the incorporation of these values of h,  is not obvious, and a suitable 
technique for doing this has not been proposed as yet [12]. 
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